Yaman Abdulhak, Ajaay Chandrasekaran, Edmond Cunningham, Lisa Jin, Levin Kim, Wenlu Yan, Xinghai Zhang Thiran Jayasundera, Dana Schlegel, Andrew DeOrio University of Michigan College of Engineering and Kellogg Eye Center, Ann Arbor, MI

Background

Problem

- Around 400 patients are diagnosed with a genetic retinal dystrophy annually.
 - The process can become expensive and time consuming due to blood tests. It is very difficult to precisely diagnose rare cases of genetic retinal dystrophies due to hundreds of possible causes.
 - Specialized eye hospitals throughout the world have isolated patient data.
- How can we consolidate genetic retinal dystrophy data in one place and utilize this data to help clinicians worldwide narrow down the cause of a given patient's dystrophy?

Solution

Create a webapp as a tool to assist with the diagnosis of genetic retinal dystrophies.

Stakeholder Objectives

KEC: Have an accurate cloud-based web app to diagnose retinal diseases. Build a large patient database and maintain patient privacy. Improve machine learning models.

Partner Hospitals: Have access to patient database and maintain patient confidentiality. Conduct further research on retinal diseases.

Dept. of Health & Human Services: Ensure HIPAA regulations. Maintain patient confidentiality.

Engineering Requirements

Machine Learning: Construct predictive model with >70% accuracy for predicting the gene causing a patient's dystrophy.

Inheritance Pattern: Construct predictive model with >75% accuracy for predicting the inheritance pattern causing a patient's dystrophy.

Frontend: Build a user-friendly web app that clinicians trust and value.

Backend: Build a web app backend that services user requests for webpages and data in <1 second.

HIPAA: Create a web app that securely manages sensitive patient data in accordance with the Health Insurance Portability and Accountability Act.

Data Analysis: Explore statistical correlations between a patient's dystrophy and other characteristic features, such as hearing loss.

Flow of Information: There are two primary functions at play in the web application: gene prediction and aggregate statistics. Given patient data, the former gives an informed prediction of what gene a patient's dystrophy may originate from. The latter relies on previously entered patient data, as well as a hindsight "known" gene, to produce statistical graphs that may expose novel relationships between the two.

3.

Cloud-Based Ocular Disease Diagnosis

Machine Learning Prediction Model

Inheritance Pattern Prediction

Form Data Entry to Gene Prediction:

In creating a patient, the user will input into a form

- a. Demographics
- b. Ocular and syndromic features
- c. Pedigree: A GUI allows users to draw the pedigree.
- d. FAF images: Anomalous features in image are reported.

2. Patient information is <u>stored</u> in a PostgreSQL database. The machine learning model receives data from the web application's database to predict the most likely genes.

Along with the top prediction, the likelihoods of each of 9 genes (USH2A, ABCA4, RDS, CHM, Bestrophin VMD2, RPGR, Rho, XLRS1, and CNGB3) are reported to the user.

"Known" Genes to Aggregate Statistics: Once clinicians receive patients' verified diagnoses, this data may be used to give statistical insight to other users. • Filtered by gene: ERG B photopic/scotopic by FAF

Mutated Gene Prediction

Web Application Prototype

- anomaly, FAF anomaly totals, multiple diagnoses, syndromic features, visual acuity by age of
- onset/progression
- All genes: FAF anomaly totals, syndromic features, hearing loss by age of onset/progression
- Hearing Loss by Age of Onset: USH2A

Predictive Model

- Mod Naiv Prev
- Mod Naiv Clini

Web Prototype

Web Data Late

Brow Loac UI/U

Trus web

Intui Inter

- Secure: The server is safeguarded against common web attacks.
- Reliable: The patient information form saves entered data at various points of completion.
- HIPAA-compliant: Stored patient data does not contain PHI, and the database aligns with HIPAA guidelines.

Validation Methodologies

5 - fold cross validation on 50 iterations:

Accuracy for Mutated Gene Prediction

el	Mean (%)	Std (%)
e Guess	31.13	0
ious Team	~67	?
	80.15	2.08

Accuracy for Inheritance Pattern Prediction

el	Mean (%)	Std (%)
e Guess	40.09	0
cian Answers	77.10	1.61
hine Answers	73.02	3.72

Арр	
ibase ncy	Database access time < 4s
vser Page d Timer	Page load times <= 1s
X	·
t of site	Single Ease Question Average Score(7-point rating scale questions) = 6 > 5
tive User face Usability testing	Task Completion Rate = 85% > 78% Number of Errors/Task =0.5 < 0.7

Response times for requests to the statistics route were significantly under the 1s goal

Pedigree App

Approximately 2.5 times faster to draw on paper from user testing. Aim to focus on user interface.

Conclusions

Future Work

 Collect more clean data on patients and their family history to better train the machine learning model.

Deploy a robust web application that is:

Acknowledgements

• We would like to thank our sponsors at Kellogg Eye Center, the U-M CSE Department, and the U-M Multidisciplinary Design Program for their generous support.

Confusion Matrix for Gene Prediction

