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Abstract—Assessing the safety of a motion plan prior to its exe-
cution is often essential in applications ranging from autonomous
vehicle navigation to medical needle steering. Uncertainty in
a robot’s motion and sensor information contributes to the
possibility that a robot may collide during execution of a plan. We
quantify the safety of a motion plan for a robot as the probability
that a collision will occur at any point in the robot’s execution of
the plan. We propose a sampling-based approach paired with a
Gaussian Mixture Model (GMM) to estimate the probability of
collision for a motion plan. We test our approach with a motion
plan computed for the PR2 robot. Our approach is not very
successful on our test case; however, we hope that it highlights
ideas that can guide us towards more accurately and efficiently
estimating a motion plan’s probability of collision.

Index Terms—collision probability, motion planning, safety,
uncertainty.

I. INTRODUCTION

Prior to executing a motion plan, we often wish to have
a notion of how safe the plan’s execution may be. Though
a motion planner may yield us an “optimal” motion plan,
which could traverse the shortest distance through a workspace
to reach a goal configuration, the plan can be very unsafe.
Optimal motion plans can often hug obstacles very closely,
yielding a likelihood of a collision occurring if a robot were
to slip and not follow a control input correctly.

The event of a collision can be very deadly in the case of
autonomous vehicles, which would be trusted to safely trans-
port passengers from one location to another. An application
such as the autonomous steering of a surgical needle through
the human body may also have significant safety concerns,
as we would not want the needle to forcefully jam itself into
delicate organs in its attempt to reach a destination.

Given the possibility that a collision may occur for a motion
plan, many motion planners attempt to adjust the plan or
produce a new plan that is much safer than the original plan.
Assessing the possibility that a collision may occur is thus
extremely essential for motion planning.

Quantifying the possibility of a collision occurring is gener-
ally accomplished by determining the probability that a robot
executing a given motion plan will experience a collision.
Unfortunately, determining the probability of collision for a
motion plan can be extremely difficult in practice. One key
source of difficulty is uncertainty in a robot’s motion and
sensor information. Motion uncertainty can cause a robot to

not obey a control input accurately, causing it to veer from
the intended motion plan. Sensor uncertainty can lead to
inaccurate estimates of a robot state during localization ap-
proaches, which can subsequently cause the robot’s controller
to inadequately correct the robot’s commanded control input
in the attempt to steer it back to following the motion plan.

Another key source of difficulty is the dependence of
collision events across the motion plan. Intuitively, the event
of a robot colliding at a single waypoint of a motion plan can
be contingent on the event of the robot colliding at previous
waypoints of the motion plan. The dependence between these
events complicates the problem of estimating the probability
of collision.

Simulation approaches attempt to determine the probability
of collision by repeatedly propagating a robot through the
motion plan thousands of times and examining how many
times it collides with an obstacle. While these approaches are
theoretically sound, they can be very expensive to conduct in
practice. Often, running the simulations can require more time
than that required to search for a motion plan! This causes
simulation approaches to be infeasible in practice.

In this paper, we propose a sampling-based approach to
estimate the probability of collision for a motion plan, which
utilizes a collision checker on robot configurations. Our ap-
proach attempts to compute the distribution of feasible robot
configurations at each waypoint of the motion plan conditioned
on the prior configurations being collision-free.

II. RELATED WORK

Methods for computing the probability of collision for a
motion plan are vast. Many existing methods for computing
the probability of collision rely on the assumption that we
can formulate obstacles as constraints on the set of feasible
configurations of a robot. Du Toit et al. proposed a “linear-
chance constraint” method [1]. Their method assumes knowl-
edge of constraints on the robot’s set of feasible configurations
and examines the probability that different constraints may be
violated by the robot during execution of a motion plan.

Patil et al. proposed an analytical approach for computing
the probability of collision for a motion plan [3]. Their
approach also assumes knowledge of obstacle constraints in
the environment, and it computes the distributions of collision-
free robot states at each waypoint of the motion plan by
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truncating the Gaussian distribution estimate with respect to
the constraints. This approach considers the dependence of
collision events across the waypoints of the motion plan. How-
ever, the assumption of already-known obstacle constraints
may not be valid in practice.

van den Berg et al. proposed an approach to compute
the probability of collision for a motion plan by using a
distance-to-obstacle checker to gauge a robot’s maximum
clearance from an obstacle. This approach does not assume
the knowledge of obstacle constraints; however, it incorrectly
assumes that the events of collision during the motion plan
are independent of each other [7].

We base our approach on insights of the approach from
Patil et al. [3], considering the fact that collision events during
the motion plan are not independent. However, we alter the
formulation to assume that the obstacle constraints of the
environment are not already known and that we instead have
a collision checker, which can determine whether an arbitrary
robot configuration is in collision.

III. ESTIMATING PROBABILITY OF COLLISION

A. Problem Statement

We consider a robot operating in an environment with
obstacles.The motion model of the robot is given as:

xt+1 = g(xt−1, ut−1,m),m ∼ N (0, Rt)

where xt ∈ C is the configuration of the robot at time t,
ut ∈ Rnu is the applied control input, and m is a zero-mean
Gaussian noise variable with variance Rt.

During execution of the motion plan, the robot obtains
measurements of surrounding landmarks. The sensor model
of the robot is given as:

zt = h(xt, l, n), n ∼ N (0, Qt)

where zt ∈ Rnz is the measurement obtained at time t, l ∈ Rnl

is the location of the landmark that is observed, and n is a
zero-mean Gaussian noise variable with variance Qt.

We assume the existence of a nominal plan computed by a
motion planner. The nominal plan is defined by:

[x∗0, u
∗
0, ..., x

∗
N , u

∗
N ]

where x∗t = g(x∗t−1, u
∗
t−1, 0) for 0 < t ≤ N , where N is the

number of configurations in the motion plan.
With the preliminary notation established, we express our

problem statement. Our goal is to estimate the probability
of collision pc for the nominal plan. More formally, this
probability is represented as:

pc = p

(
N∨
t=0

x∗t /∈ CF

)

where CF ⊂ C represents the space of non-colliding configu-
rations.

B. Formulation and Assumptions

Much of existing literature on this subject assumes that
we can represent obstacles in the environment as known
constraints on the robot’s feasible locations in the workspace.
However, we do not make that assumption, and we assume
that there instead exists a collision checker φ : C →
{TRUE,FALSE}, which can determine if a configuration is in
collision. If x /∈ CF , φ(x) = TRUE; otherwise φ(x) = FALSE
[2].

The assumption of an available collision checker contrasts
our formulation from other literatures, which tend to only
consider point robots through the formulation of known robot
location constraints based on obstacles. Our formulation lets us
consider the possibility of non-point robots, whose locations in
the workspace may cause collisions with obstacles due to the
robots having 3D-geometries and being situated with complex
orientations.

We assume that the Extended Kalman Filter (EKF) local-
ization algorithm [6] is used to compute x̂t, an estimate of
the robot’s true configuration, xt, at time t. The covariance
of the EKF estimate of xt is given by Σt. We assume that
there is a set of already known landmarks in the environment,
L = l1, ..., lnl

, where nl is the number of landmarks, and that
data association between sensor measurements and landmarks
is known.

Due to the Gaussian noise in the motion model, we expect
that the robot will deviate from the nominal motion plan during
its execution. To compensate for the motion uncertainty, we
assume that the robot operates with a closed-loop feedback
controller [5]. We assume that there exists a linear feedback
control law that operates on the EKF estimate of the robot
configuration and attempts to keep the robot close to the
nominal plan. This feedback policy is given as:

ūt = Lt+1(x̂t − x∗t )

where Lt is the control gain matrix, which is contingent on
the choice of feedback controller [5] and ūt is the necessary
deviation from the nominal control input u∗t to account for
the robot’s deviation from the nominal plan. It follows that
ut = ūt + u∗t , where ut represents the true control input to
be executed by the robot–given the deviation of the robot’s
estimated configuration x̂t from the nominal configuration x∗t .

C. Sources of Difficulty

Computing the probability of collision for a motion plan in
practice is a difficult task. There are three key sources of the
difficulty:

1) Uncertainty in robot motion and sensor models
2) Dependent individual events of collision
3) Computational time of Monte-Carlo simulations
We proceed to describe each of these sources.
1) Model Uncertainty: Robot motion is often corrupted by

noise. We find that when we command a robot to follow a
nominal control input, it often does not follow the command
exactly due to various factors–usually wheel slippage due to
lack of uniformity for workspace surfaces.
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Furthermore, sensor measurements that are used to localize
a robot are also corrupted by noise. Using sensor mea-
surements for localization causes uncertainty in the robot’s
known position. When using a state estimate as an input to
a feedback control loop to correct the robot’s position, there
is a subsequent uncertainty in the effectiveness of the desired
control input adjustment. This uncertainty counters our desired
intention of guiding the robot so that it more-or-less follows
the nominal motion plan.

2) Dependence between Collision Events: A key feature of
this problem is that the event of a collision not occurring at
a configuration xt of a motion plan is not independent of the
event of a collision not occurring at previous configurations
of the motion plan. More formally:

p(xt ∈ CF ) 6= p

(
xt ∈ CF |

t−1∧
i=0

xi ∈ CF

)
Prior approaches to solving this problem often consider the

events of collisions along the motion plan to be independent of
each other, which can lead to an overly conservative estimate
of the probability of collision for a motion plan. Incorporating
the fact that the collision events (and non-collision events) are
dependent on each other increases the difficultly of computing
an accurate estimate of the probability of collision.

3) Computational Time of Monte-Carlo Simulations: Run-
ning a large number of Monte-Carlo simulation, each having
a large number of particles, can–in theory–give the true
probability of collision for a motion plan. The idea of a Monte-
Carlo simulation is to simulate the motion of thousands of
particles, each particle representing a potential configuration
of a robot’s configuration given uncertainty in the robot’s true
configuration xt. By finding the proportion of particles that
did not collide with obstacles at all during the entirety of a
motion plan, we can have an estimate of the probability of
collision.

However, a single Monte-Carlo simulation is generally not
sufficient, and we would need to average the proportions
of colliding-particles across hundreds or even thousands of
Monte-Carlo simulations to obtain an accurate estimate of the
true probability of collision for the motion plan.

Furthermore, running a single Monte-Carlo simulation with
thousands of particles can be very computationally expen-
sive due to the compounding of time required for collision
checking. Running thousands of Monte-Carlo simulations
compounds the computation time even further, causing this
approach to be a poor idea in practice.

D. Metric Evaluation
Given the sources of difficulty for this problem, we pri-

marily strive to compute an accurate estimate of the true
probability of collision for a motion plan. We also seek to
compute the probability of collision for the plan in an amount
of time that is approximately less than or equal to the time
required for a single Monte-Carlo simulation while within the
error bounds of the average proportion of colliding particles
that would be computed from executing hundreds of Monte-
Carlo simulations with many particles in each simulation
instance.

Fig. 1. Propagation and Truncation of State Estimate Distribution. Figure
borrowed from Patil, van den Berg, Alterovitz 2012. “The probabilities of
collision at each stage of the plan are conditioned on the previous stages being
collision-free. We truncate a priori distributions with respect to obstacles to
discount plan executions that collide with obstacles (black disks). Propagating
the truncated distributions (black ellipses) accounts for only the collision-free
samples (red disks), resulting in accurate estimation of the probability of
collision. Using the unconditional distributions (gray ellipses) to estimate the
collision probability results in a very conservative estimate.”[3]

Ideally, running our method should on average produce
an estimate that is closer to the true probability of collision
than the estimate that may be obtained from running a single
Monte-Carlo simulation.

IV. METHOD

A. Method Basis

We propose a sampling-based method paired with the use of
a Gaussian Mixture Model (GMM) to estimate the probability
of collision for a motion plan. Our method adopts ideas
from the the approach proposed by Patil, van den Berg, and
Alterovitz [3]. However, our approach differs in that we do
not assume that the environment obstacles can be represented
as constraints on the robot location in the workspace, and we
assume that a collision checker exists instead.

Figure 1 portrays the approach recognized in [3], which
estimates the probability of collision for a motion plan by
propagating a Kalman Filter (KF) estimate of a robot’s state
and truncating the distribution of the estimate with respect to
obstacles. Patil et al. make the observation that the distribution
of the robot’s configuration at a timestep t–conditioned on the
configurations xi ∈ C, ∀i, 0 ≤ i < t being collision-free,
can be represented by repeatedly propagating the robot’s KF
estimate via the motion plan and truncating the KF estimate
with respect to the obstacles. They also note that the proportion
of the distribution that has been truncated by the obstacles
would represent the conditional probability of collision for
that state of the motion plan.

The approach of Patil et al. is purely analytical. It truncates
the KF estimate of the robot state by sequentially applying
each obstacle constraint to truncate the Gaussian distribution
of the state estimate using analytical techniques from existing
statistical literature. They assume that the truncation of a
Gaussian distribution by the obstacle constraints subsequently
yields another Gaussian distribution.



4

The approach of Patil et al. makes two more important
assumptions that are important to note when they truncate the
KF estimate with respect to obstacles:

1) The obstacles in the environment can be expressed
as linear constraints on the robot’s location in the
workspace

2) The free region containing the robot’s configuration at
time t is convex

We base our approach on the framework of [3], and attempt
to release these assumptions as we define our sampling-based
GMM approach to estimate the probability of collision.

B. Method Overview and Justification

An important note to make is that the approach in [3] may
be sufficient if we could express linear constraints in the con-
figuration space C of a robot. Knowing the obstacle constraints
in C rather than as constraints on location in the robot’s 3D-
workspace could allow us to apply the approach of Patil et
al. to truncate the distribution that represents a KF estimate
of the robot’s configuration. However, in general, computation
of COBS ⊂ C, the space of all robot configurations that lead
to collision with an obstacle, is computationally expensive in
practice. It follows that learning configuration constraints in C
rather than in the workspace may be very difficult in practice,
as well. Furthermore, the constraints of C may also not be
linear since C can have a complex topology.

Knowing (or learning) constraints for a robot’s set of
feasible configurations in C does not seem computationally
efficient; however, we assume that we have access to the
collision checker φ, which asserts whether an arbitrary x ∈
COBS . Given the existence of a collision checker, we believe
that a sampling-based approach for truncation of Gaussian
distributions is necessary for a decent attempt of a solution
to estimating the probability of collision. Other approaches
assume the existence of a distance-to-obstacle checker [7],
which may allow us to quantify the maximum clearance from
an obstacle for a robot configuration to not collide. These
approaches utilize this clearance in their computation of the
probability of collision.

We observe that we need a method to truncate the robot
state distribution computed from the KF estimate with respect
to obstacles, where the proportion of the distribution that is
truncated would represented the probability of collision for
that waypoint of the motion plan–contingent on the the prior
states being collision-free.

A straightforward approach using the collision checker
involves sampling random configurations from the KF estimate
of the robot’s state and taking note of:

1) the proportion of sampled configurations in collision
2) the set of configurations that are not in collision
Given (1), we would have an estimate, pct, for the probabil-

ity of collision for that waypoint of the motion plan, and 1−pct
would represent the conditional probability of no collision,
given that the previous states of the motion plan were collision-
free. Given (2), we would be able to fit a distribution to the set
of configurations that are not in collision, effectively truncating
the original robot state distribution.

Fig. 2. Our GMM approach attempts to handle situations where the distri-
bution obtained by the truncation of the robot’s configuration distribution by
obstacles may not necessarily be represented sufficiently by a single Gaussian.
[Left] When the EKF estimate of the robot’s configuration (orange ellipse) is
truncated, a single Gaussian distribution (green ellipse) may not best represent
the subsequent collision-free distribution. [Right] A mixture of two Gaussians
may represent the truncated collision-free distribution better than a single
Gaussian.

The left image of Figure 2 portrays this approach where
we attempt to fit a single Gaussian distribution to the set of
robot configurations that are not in collision. We find that in
extreme cases like this, a single Gaussian distribution may
not best represent the distribution of non-colliding particles.
This can be especially common if the feasible region in C
containing xt is non-convex. Our approach recognizes this
issue and attempts to truncate the distribution and represent
the distribution of the subsequent set of non-colliding points
as a mixture of Gaussians, or a GMM. We believe that the
use of a GMM would more accurately capture the distribution
of non-colliding configurations. The idea of this approach is
demonstrated in the right image of Figure 2.

We also note that the approach in [3] degenerates when the
free space containing the robot configuration is non-convex,
as they use a greedy method to convexify the free space and
obtain and overestimate of the probability of collision. This
stems from their assumption that a single Gaussian distribution
best represents the truncated distribution. We construct our
GMM approach with the intention that it can handle these
occurrences, representing the truncated distribution, as in the
case of Figure 2, more accurately.

C. Algorithm
Algorithm 1 portrays our sampling-based GMM collision

probability estimation algorithm. The algorithm takes as input
the nominal motion plan computed by a motion planner,
[x∗0, u

∗
0, ..., x

∗
N , u

∗
N ], and the initial configuration estimate µ0

and its covariance Σ0. The algorithm also receives the number
of Gaussians to use NG, and the number of samples Np to take
at each time step. The algorithm is also depicted pictorally in
Figure 3.

The algorithm begins by initializing the EKF estimate mean
and covariance. Generally, µ0 = x∗0. Line 3 initializes a run-
ning proportion pf for the probability that all configurations in
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(a) (b) (c) (d)

Fig. 3. Sampling-Based GMM Collision Estimation Algorithm applied to Mixture of 2 Gaussians. (a) Initialize mixture components with same initial mean
x∗
0 and covariance Σ0, as well as equal weights (Means shown as different here to highlight distinction). Gaussians are represented by blue ellipses. (b)

Propagate Gaussians in mixture to next state of motion plan via EKF prediction step. Updated Gaussians are represented by red ellipses. (c) Update Gaussians
(orange ellipses) via EKF correction step based on landmark measurements. Then, sample Np configurations from GMM based on weights. Check which
configurations are in collision. Red dots represent colliding configurations and blue dots represent collision-free configurations. (d) Update mean and covariance
of each Gaussian analytically based on the set of collision-free configurations contained in it. Update each mixture component’s weight to be the proportion
of the total non-colliding configurations that it contains.

Algorithm 1 Sampling-Based GMM Collision Estimation
Input: [x∗0, u

∗
0, ..., x

∗
N , u

∗
N ], µ0,Σ0, NG, Np

Output: pc
1: µ∗ ← µ0

2: Σ∗ ← Σ0

3: pf ← 1
4: [µ∗

1,Σ
∗
1, ..., µ

∗
NG
,Σ∗

NG
] ← INIT GMM(NG, µ0,Σ0)

5: [λ1, ..., λNG
]← [ 1

NG
, ..., 1

NG
]

6: for i = 0 to i = N − 1 do
7: ūi ← Lt+1(µ∗ − x∗i )
8: ui ← u∗i + ūi
9: µ̄∗, Σ̄∗ ← EKF PREDICT(µ∗,Σ∗, ui)

10: zi ← SENSOR READ()
11: µ∗,Σ∗ ← EKF CORRECT(µ̄∗, Σ̄∗, zi)
12: for j = 1 to j = NG do
13: µ̄∗

i , Σ̄i
∗ ← EKF PREDICT(µ∗

i ,Σ
∗
i , ui)

14: µ∗
i ,Σ

∗
i ← EKF CORRECT(µ̄∗

i , Σ̄
∗
i , zi)

15: end for
16: [µ∗

1,Σ
∗
1, ..., µ

∗
NG
,Σ∗

NG
], pi ← TRUNCATE GMM()

17: pf ← pf ∗ pi
18: end for
19: pc ← 1− pf

the motion plan are collision-free. Line 4 initializes the GMM;
the INIT GMM procedure simply assigns each mixture’s µ∗

and Σ∗ to be the same as µ0 and Σ0 respectively. Furthermore,
Line 5 initializes the weight, λi, of each mixture component
to 1

NG
.

Lines 6-18 consist of a main loop that propagates the EKF
estimate of the robot’s state, and the GMM representation of
the collision-free conditional distribution, through the motion
plan.

In Lines 7-8, the linear feedback control gain Lt+1 is used
to adjust the nominal control input u∗i to attempt to fix the
deviation between the KF estimate of the robot’s current state
µ∗ and the nominal state x∗t in the motion plan [5].

The functions EKF PREDICT and EKF CORRECT rep-
resent the prediction and correction steps of the Extended
Kalman Filter respectively [6]. Lines 9-11 apply the prediction
and correction steps to the KF estimate parameters µ∗,Σ∗

based on the adjusted control input and a set of sensor
measurements z with known data association between mea-
surements and landmarks. Furthermore, Lines 12-15 apply the

EKF PREDICT and EKF UPDATE steps on each component
of the GMM.

Line 16 applies the TRUNCATE GMM algorithm, which
uses our sampling-based approach to truncate each GMM
component. The algorithm takes as input the current means
and covariances of the GMM and returns the updated means
and covariances following truncation.

The TRUNCATE GMM algorithm also returns pi, the
proportion of samples drawn from the GMM mixture that
did not collide with obstacles, which ultimately estimates the
conditional probability that the current waypoint of the motion
plan will be collision-free given that the previous waypoints
are collision-free. This value is then used in Line 17 to update
pf , the running product representing the probability that all
waypoints in the motion plan so far are collision-free.

Following the end of the main loop through all of the motion
plan waypoints (Line 18), pf stores an estimate of the the
probability that all configurations in the motion plan will be
collision-free. Line 19 computes pc ← 1−pf , which represents
the probability that there existed a configuration in the motion
plan that experienced a collision.

We proceed to discuss the TRUNCATE GMM subproce-
dure, which is portrayed in Algorithm 2. Given the GMM
represented by [µ∗

1,Σ
∗
1, ..., µ

∗
NG
,Σ∗

NG
] and the number of

samples NP , the algorithm attempts to update the GMM
representation of the robot’s state distribution by discounting
all colliding configurations from the distribution.

On Line 1, Np configurations are sampled from the GMM
using the weights λ1, ...λNG

. For the mixture component
parameterized by µi,Σi, the set χi stores the configurations
that were obtained from that component during the sampling.

Line 2 initializes a new set χ̄i for each mixture component,
which ultimately will store the configurations associated with
that component’s sample set, χi, which are not in collision. In
other words:

∀i, 1 ≤ i ≤ NG, (χ̄i = {q ∈ χi|q ∈ CF })

The loop during lines 5-14 computes each χ̄j , which is
updated on Line 10 whenever a new configuration from χj is
found to not be in collision.

The TRUNCATE GMM procedure also maintains several
counts. Line 3 initializes the counts, Fi, for the number of
non-colliding particles in each mixture sample. In other words:

∀i, 1 ≤ i ≤ NG, (Fi = |χ̄i|)
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Algorithm 2 TRUNCATE GMM
Input: [µ∗

1,Σ
∗
1, ..., µ

∗
NG
,Σ∗

NG
], NP

Output: [µ∗
1,Σ

∗
1, ..., µ

∗
NG
,Σ∗

NG
], pi

1: [χ1, ..., χNG
] ← SAMPLE GMM(Np)

2: [χ̄1, ... ¯χNG
]← [∅, ..., ∅]

3: [F1, ..., FNG
]← [0, ..., 0]

4: Cc ← 0
5: for j = 1 to j = NG do
6: for q in χj do
7: if CHECK COLLISION(q) == TRUE then
8: Cc ← Cc + 1
9: else

10: χ̄j ← {χ̄j , q}
11: Fj ← Fj + 1
12: end if
13: end for
14: end for
15: for j = 1 to j = NG do
16: µ∗

j ← MEAN(χ̄j)
17: Σ∗

j ← COVARIANCE(χ̄j)
18: λj ← Fj∑NG

i=1 Fi

19: end for
20: pi ← Cc

Np

21: pi ← 1− pi

Furthermore, Cc, which is initialized on Line 4, represents
the count of all configurations across all of the samples
[χ1, ..., χNG

] that were in collision. More formally:

Cc = NP −
NG∑
i=1

Fi

Lines 15-19 update the GMM components’ means and
covariances to be the sample mean and covariance of the sets
χ̄j of non-colliding points in each mixture sample. Line 18
also updates the weight of each mixture component to be
the proportion of non-colliding configurations in the mixture
sample across the sum of the counts of all non-colliding
configurations from all the samples.

For a pictoral representation of the overall algorithm, refer
to Figure 3.

D. Algorithm Analysis

We recognize that our algorithm may suffer computationally
due to extensive time required to sample configurations from C
and check for collisions for each sample at every waypoint of a
motion plan. Furthermore, the random sampling-based nature
and the noise in motion and sensor information may also yield
a different estimated probability of collision pc during each
time that the algorithm is executed.

Our goal in applying this algorithm is to obtain a reasonable
estimate of the true probability of collision within a certain
error-bound. Executing hundreds of Monte-Carlo simulations
would potentially yield the true probability of collision; how-
ever, pursuing that approach would be very computationally
expensive in practice.

Fig. 4. Experimental Setup for Our Method with PR2 Robot. The black dots
represent the nominal motion plan to be executed by the PR2. The green dots
represent landmarks for the EKF localization.

Ideally, our sampling-based method would be able to ex-
ecute in about the same amount of time as a single Monte-
Carlo simulation while yielding the same accuracy as that of
averaging the probability of collision from running hundreds
of Monte-Carlo simulations.

In other words, the algorithm strives to compute an estimate
of the probability of collision that is centered about the
mean probability of collision computed from Monte-Carlo
simulations while having a lower variance for this estimate
than the variance in collision probabilities across thousands of
Monte-Carlo simulations

Suppose that Np represents the number of samples (or the
number of particles used in a Monte-Carlo simulation), N
represents the number of waypoints in our motion plan, and
Nm represents the number of Monte-Carlo simulations we
might execute to compute the probability of collision. Our
method would execute inO(NNp) time. Executing the Monte-
Carlo simulations, however, would require O(NNpNm) time.
If our method is successful, it could be much more efficient
than the Monte-Carlo simulation method while still retaining
the same accuracy.

V. RESULTS

We evaluate our method on a motion plan for the PR2 robot
to gauge how well it performs in general. The PR2 robot
navigates its environment under the guidance of noisy sensor
measurements and with noise in its motion.

We design our experiments to answer the question: Can our
algorithm execute in about as much time as a single Monte-
Carlo simulation and obtain, on average, a reasonable estimate
of the probability of collision without having to average results
from executing hundreds of Monte-Carlo simulations?

In other words, we would like to see if perhaps running one
execution of our method can on average be more accurate than
running a single Monte-Carlo simulation.

We initialize our method with a nominal motion plan com-
puted using an A* planner. We tested our C++ implementation
on a 4-core Intel 2.20GHz i5TM PC. We use the OpenRave
Motion Planning framework and the Armadillo linear algebra
library [4] for our experiments.
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Fig. 5. Distribution of the proportions of particles colliding across 200 Monte-
Carlo simulations, each simulation propagating 10,000 particles.

The experimental setup, including the environment and
nominal motion plan, is depicted in Figure 4.

A. Models and Parameters

We consider the PR2 robot to be navigating in a 2D
environment with obstacles (Figure 4). The state of the robot
x = [x, y, θ]T ∈ R3, consists of its position [x,y], and its
orientation θ. The control input u = [δrot1, δtrans, δrot2]T

represents the robot’s odometry, which is encoded as a se-
quence of commands: a rotation, a straight-line translation,
and a second rotation [6] [Chapter 5]. The motion noise is
represented as m = [x̃, ỹ, θ̃]T ∼ N (0, R), where R ∈ R3x3

represents the covariance of the noise in the robot’s motion in
the configuration space C.

The motion model of the robot is given as:

g(x,u,m) =

x+ δtranscos(θ + δrot1)
y + δtranssin(θ + δrot1)

θ + δrot1 + δrot2

+

εm1

εm2

εm3


where the notation εi represents a zero-mean Gaussian noise

variable with variance i. Following the notation in Thrun,
2005 [6], we can specify parameters [α1, α2, α3, α4] to encode
the amount of noise in the robot’s motion. Furthermore, we

can compute the matrix R = VMV T , where V =
∂g

∂x
,

and M = diag(α1δ
2
rot1 + α2δ

2
trans, α3δ

2
trans + α4δ

2
rot1 +

α4δ
2
rot2, α1δ

2
rot2 + α2δ

2
trans).

The PR2 robot localizes itself using noisy distance mea-
surements from eight landmarks, each landmark i being de-
scribed as li = [lx, ly]T . The sensor noise is represented as
n = [z̃] ∼ N (0, Q), where Q ∈ R1x1 represents the noise
variance.

The sensor model of the robot is subsequently given as:

h(x, l,n) =
√

(lx − x)2 + (ly − y)2 + εQ

Fig. 6. Distribution of the probability of collision across 200 Monte-Carlo
executions of 2-GMM, each execution taking 10,000 samples for GMM
truncation.

B. Analysis

We validate the accuracy of our method by first establishing
a ground truth probability of collision for our nominal motion
plan via a large number of Monte-Carlo simulations.

We executed 200 Monte-Carlo simulations, each simulation
propagating 10,000 particles through the motion plan. The pro-
portion of particles that experienced a collision during a single
simulation would represent the estimate of the probability
of collision for that simulation. The Monte-Carlo simulation
results are shown in Figure 5. You can see that the range
of the proportion of particles that experience a collision varies
across a spectrum from 0.84 to 1. The mean of the distribution
is 0.9348, which we consider as our baseline ground-truth
probability of collision. Each Monte-Carlo simulation requires
81.93 seconds on average.

We then executed our algorithm with 1, 2, and 3 mixture
components. We refer to these executions as 1-GMM, 2-
GMM, and 3-GMM. For each of these configurations of
mixture components, we executed our algorithm 200 times
and with Np = 10, 000 samples and recorded the probability
of collision pc returned for each execution. Figure 6 shows
the distribution of probabilities of collision obtained from
executing 2-GMM. The distributions for 1-GMM and 3-GMM
are similar.

TABLE I
PROBABILITY OF COLLISION ESTIMATE FOR VARIOUS METHODS

(200 EXECUTIONS, 10,000 SAMPLES)

1-GMM 2-GMM 3-GMM MC Simulation
Mean 0.6364 0.6393 0.6424 0.9348
Std.Dev 0.0699 0.0696 0.0686 0.0406
% Error -31.92 -31.61 -31.28 0
Avg. Time(sec) 72.58 71.67 72.79 81.93

Each of the different GMM configurations are compared
in Table I alongside the Monte-Carlo simulation estimate
of the probablility of collision. Unfortunately, we find that
our method performs poorly compared to the ground truth
probability of collision deduced from the Monte-Carlo simula-
tions. We see that our GMM method estimates the probability
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of collision on average to be 0.63 and this estimate does
not change at all even if we alter the number of GMM
components. This equates to a 31% error from the ground
truth probability of collision estimated from the Monte-Carlo
simulations, 0.9348.

Our method requires slightly less time on average than a
single Monte-Carlo simulation, which is expected since our
algorithm has approximately the same computational complex-
ity.

However, our method unfortunately does not provide a more
accurate estimate on average compared to running a single
Monte-Carlo simulation. We attempt to analyze shortcomings
of our algorithm and sources of error in the following discus-
sion section.

VI. DISCUSSION

We note that our algorithm had attempted to estimate the
probability of collision for a motion plan in about the same
amount of time as a single Monte-Carlo simulation while
having the accuracy of the result obtained from averaging hun-
dreds of Monte-Carlo simulations. We assumed that propagat-
ing a GMM representation of the robot’s configuration through
the motion plan and truncating the GMM representation could
permit us to accurately compute the conditional probability
that a state of the motion plan is collision-free given that prior
states in the motion plan were collision-free.

An interesting element of our results is that varying the
number of components in the GMM does not seem to change
the accuracy of our method. You can see in Table I that by
varying the number of components from 1 to 3, the average
estimated probability of collision remains at approximately
0.63. The case of 1-GMM represents the specific case of
using only 1 Gaussian with a weight λ = 1. It seems that
our method produces a consistent result despite the number of
components in the GMM. This makes it evident that the GMM
approach may not be the root cause of the high percent error
from the MC-Simulation assessed probability of collision...as
1 Gaussian still performs as well as using 2 or 3 Gaussians
for our mixture.

A key difference from our approach and the approach used
by Patil et al. in [3] is that they produce a KF estimate of the
deviation of the robot’s true configuration from the nominal
configuration at a time step t. On the other hand, we use
our KF to estimate the robot’s true configuration. We have
heard recently from a respected PhD candidate that using a
KF to estimate deviations of the robot’s true state from the
nominal state rather than solely estimating the robot’s true state
can be more accurate in practice. This accuracy stems from
the linearization of the deviation-expressed sensor and motion
models being more stable than the linearization of the regular
sensor and motion models. It could be possible that a poor
KF estimate of the robot’s state may be the cause of failure
for our method. However, from trial and error, we tuned the
[α1, α2, α3, α4] parameters from the odometry motion model
and the sensor noise Q so that the KF covariance ellipses
seemed to decently estimate the robot’s true configuration at
any time step. It is difficult to assess whether inaccuracy in

the EKF estimation is the root cause of the method’s poor
performance.

VII. CONCLUSION

We have presented an attempt for an algorithm for accu-
rately and efficiently estimating the probability of collision
for a motion plan. Our approach samples configurations of a
robot’s state from a GMM, which attempts to represent the
conditional distribution of collision-free states for the robot
given that prior states in the motion plan were collision-free.

Though our approach did not seem to be successful in prac-
tice, we hope that the attempt of using GMM’s to represent the
distribution of collision-free states can be used as inspiration
for future approaches, as we believe that a single Gaussian
distribution may not best represent this distribution in various
scenarios. We also believe that our work provides a meaningful
contribution to this field in recognizing that we do not always
have knowledge of obstacle constraints and that we may only
be able to use a collision checker to estimate the probability
of collision.

For future work, we would hope to investigate sources of
error in our algorithm. Primarily, we would look at attempts
to produce a KF estimate of the deviation of a robot’s
configuration from the nominal configuration, rather than a
KF estimate of the robot’s configuration. We believe that this
could be a likely issue in our approach.

We also would attempt to alter our algorithm slightly to
obtain better performance. One approach in mind is to alter
how we assign weights to the components of the GMM, per-
haps looking at another metric aside from proportion of non-
colliding configurations across all GMM samples to assign the
λ weights. Another idea is to utilize approaches from machine
learning, i.e. the EM algorithm, to learn a GMM representing
the distribution of collision-free configurations at a waypoint
of a motion plan.
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